跳过正文
Background Image

Posts

2025

后端部署第二步:本地到公网——如何使用 Nginx 发布 FastAPI 服务
后端部署第二步:本地到公网——如何使用 Nginx 发布 FastAPI 服务 # 在当今的开发环境中,快速构建和部署后端服务变得至关重要。FastAPI 作为一个高性能、现代化的 Python 异步 Web 框架,广受开发者喜爱。而 Nginx 则是部署 Web 应用最常见也是最稳定的解决方案之一。
Fast-dLLM:通过KV Cache和并行Decoding加速dLLM
·2003 字·4 分钟
Fast-dLLM:通过 KV Cache 和并行 Decoding 加速 dLLM # Fast-dLLM: Training-free Acceleration of Diffusion LLM by Enabling KV Cache and Parallel Decoding
后端部署第一步:Nginx 发布服务前的万全准备
·1594 字·4 分钟
后端部署第一步:Nginx 发布服务前的准备工作 # 你是不是刚刚用 Java、Python 或 Go 写出了第一个后端程序?它在本地跑得飞快,通过 localhost:8080 就能访问,功能也都挺顺畅。接下来,自然而然会冒出一个念头:“我要怎样才能让别人也能访问到它?”
自信地深度思考
·2274 字·5 分钟
自信地深度思考 # DEEP THINK WITH CONFIDENCE
TriangleMix:无损且高效的用于预填充阶段的注意力模式
·2323 字·5 分钟
TriangleMix:无损且高效的用于预填充阶段的注意力模式 # TriangleMix: A Lossless and Efficient Attention Pattern for Long Context Prefilling
ASC:CoT压缩的激活引导 Training free
·1854 字·4 分钟
ASC:CoT 压缩的激活引导 Training free # Activation Steering for Chain-of-Thought Compression
SEAL:大语言模型的可操控推理 Traning Free
·2081 字·5 分钟
SEAL:大语言模型的可操控推理 Traning Free # SEAL: Steerable Reasoning Calibration of Large Language Models for Free
Hmm等Token影响模型推理能力
·2840 字·6 分钟
Hmm 等 Token 影响模型推理能力 # Demystifying Reasoning Dynamics with Mutual Information: Thinking Tokens are Information Peaks in LLM Reasoning
AdaCoT:通过强化学习实现的帕累托最优自适应链式思维触发器
·1472 字·3 分钟
AdaCoT:通过强化学习实现的帕累托最优自适应链式思维触发器 # AdaCoT: Pareto-Optimal Adaptive Chain-of-Thought Triggering via Reinforcement Learning
AdaptThink: 让模型决定是否思考
·1806 字·4 分钟
AdaptThink: 让模型决定是否思考 # AdaptThink: Reasoning Models Can Learn When to Think
SpecReason:使用推测性推理实现加速推理
·1229 字·3 分钟
SpecReason:使用推测性推理实现加速推理 # SpecReason: Fast and Accurate Inference-Time Compute via Speculative Reasoning
ThinkLess:一种无需训练的推理高效方法,用于减少推理冗余
·941 字·2 分钟
ThinkLess:一种无需训练的推理高效方法,用于减少推理冗余 # ThinkLess: A Training-Free Inference-Efficient Method for Reducing Reasoning Redundancy
Thinkless: LLM Learns When to Think
·1167 字·3 分钟
Thinkless: LLM Learns When to Think # Thinkless: LLM Learns When to Think
🧠思维操控:外部CoT辅助大模型推理
·1480 字·3 分钟
🧠 思维操控:外部 CoT 辅助大模型推理 # Thought Manipulation: External Thought Can Be Efficient for Large Reasoning Models
⏰开始作答:弹性推理实现的可扩展的CoT
·1378 字·3 分钟
⏰ 开始作答:弹性推理实现的可扩展的 CoT # Scalable Chain of Thoughts via Elastic Reasoning
DEER:基于Trial置信度的推理早停
·1675 字·4 分钟
DEER:基于 Trial 置信度的推理早停 # DYNAMIC EARLY EXIT IN REASONING MODELS
SoftCoT:Prompt➡️SLM➡️LLM
·1168 字·3 分钟
SoftCoT:Prompt➡️SLM➡️LLM # SoftCoT: Soft Chain-of-Thought for Efficient Reasoning with LLMs
CODI: 通过自蒸馏将CoT压缩到连续空间中
·1122 字·3 分钟
CODI: 通过自蒸馏将 CoT 压缩到连续空间中 # CODI: Compressing Chain-of-Thought into Continuous Space via Self-Distillation
HAWKEYE:大小模型协作实现精简CoT
·1502 字·3 分钟
HAWKEYE:大小模型协作实现精简 CoT # Hawkeye:Efficient Reasoning with Model Collaboration
LCIRC: 长文档循环压缩方法 (LLM Training Free)
·1445 字·3 分钟
LCIRC: 长文档循环压缩方法 (LLM Training Free) # LCIRC: A Recurrent Compression Approach for Efficient Long-form Context and Query Dependent Modeling in LLMs
LLM在连续Latent空间中推理
·2096 字·5 分钟
LLM 在连续 Latent 空间中推理 # Training Large Language Models to Reason in a Continuous Latent Space
Pause Token:隐式CoT
·1600 字·4 分钟
Pause Token:隐式 CoT # Think before you speak: Training Language Models With Pause Tokens
面向模型推理思考优化的Test time scaling
·2784 字·6 分钟
面向模型推理思考优化的 Test time scaling # Towards Thinking-Optimal Scaling of Test-Time Compute for LLM Reasoning
CCoT:通过密集表示实现高效推理
·1773 字·4 分钟
CCoT:通过密集表示实现高效推理 # Compressed Chain of Thought: Efficient Reasoning Through Dense Representations
Token预算意识的llm推理
·1535 字·4 分钟
Token 预算意识的 llm 推理 # Token-Budget-Aware LLM Reasoning
INFTYTHINK:打破大型语言模型长上下文推理长度限制
·3139 字·7 分钟
INFTYTHINK:打破大型语言模型长上下文推理长度限制 # InftyThink: Breaking the Length Limits of Long-Context Reasoning in Large Language Models
TokenSkip:可控的CoT压缩 in LLMs
·787 字·2 分钟
TokenSkip:可控的 CoT 压缩 in LLMs # TokenSkip: Controllable Chain-of-Thought Compression in LLMs
LightThinker: 每个想法压缩成两个token
·2304 字·5 分钟
LightThinker: 每个想法压缩成两个 token # 如果 lt 确实靠谱